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Microtubule length distributions in the presence of protein-induced severing
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Microtubules are highly regulated dynamic elements of the cytoskeleton of eukaryotic cells. One of the
regulation mechanisms observed in living cells is the severing by the proteins katanin and spastin. We intro-
duce a model for the dynamics of microtubules in the presence of randomly occurring severing events. Under
the biologically motivated assumption that the newly created plus end undergoes a catastrophe, we investigate
the steady-state length distribution. We show that the presence of severing does not affect the number of
microtubules, regardless of the distribution of severing events. In the special case in which the microtubules
cannot recover from the depolymerizing state (no rescue events) we derive an analytical expression for the
length distribution. In the general case we transform the problem into a single ordinary differential equation

that is solved numerically.
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I. INTRODUCTION

Microtubules are filamentous protein aggregates that ap-
pear in all eukaryotic cells. They have an inherent polarity
that results in different dynamics at their two ends. The so-
called plus end is highly dynamic, alternating between pro-
longed periods of polymerization (growth) and depolymer-
ization (shrinkage) [1]. On the other end of the filament, the
minus end often remains connected to the locus of nucleation
[2] or is found to exhibit relatively steady depolymerization
[3]. The combination of slow depolymerization at the minus
end and prolonged growth at the plus end leads to a phenom-
enon known as treadmilling, whereby the individual tubulin
dimers appear to move from the plus to the minus end [4]. As
the stiffest of the cytoskeletal filaments, microtubules are
widely used in intracellular transport and for structural sup-
port. Therefore, the dynamic properties of the microtubules
are tightly regulated by the cell, often through the use of
microtubule-associated proteins (MAPs) [5].

In this work we investigate one particular type of MAP
that causes the severing of microtubules. It was noted by
Vale [6] that otherwise stable microtubules could be severed
in mitotic extracts of Xenopus eggs. This activity was traced
back to a protein that is able to use ATP hydrolysis to sever
microtubules. The protein was identified only later and given
the name katanin after the katana, the Japanese Samurai
sword [7]. Katanin is a heterodimer, consisting of the p60
and p80 subunits: the p80 subunit is thought to be respon-
sible for the targeting of the protein, whereas p60 is involved
in the actual severing as part of a hexameric ring [8]. The
hexameric form of katanin appears to remove individual
dimers from the microtubule lattice, thereby compromising
the structural integrity of the microtubule. It is not currently
clear whether katanin acts uniformly along the microtubule,
or whether it is attracted by pre-existing lattice defects [9].

Katanin homologs have since been discovered across the
animal and plant kingdoms [2]. Another severing protein by
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the name of spastin has also been identified. Like katanin, it
also assembles in a hexameric ring suggesting a severing
mechanism similar to that of katanin [10]. Both katanin and
spastin are capable of severing microtubules at seemingly
random locations, and are used by the cell for the regulation
of the cytoskeleton [11], for example, in the mitotic and mei-
otic spindles [12] or the formation of the transverse cortical
array in plant cells [13,14]. Generally, the activity of sever-
ing proteins leads to a decrease in the average microtubule
length, but an increase in their number [11]. Surprisingly,
this increase in number can sometimes more than offset the
loss of microtubule length due to the average length decrease
[15].

In this work, we investigate theoretically how the occur-
rence of microtubule severing at random positions affects the
length distribution of microtubules. Previous studies have as-
sessed the effect of severing on actin filaments [16,17]. How-
ever, whereas actin has a single growth mode that is de-
scribed  well by constant  polymerization  and
depolymerization rates, microtubules show richer dynamics
because the plus end switches between growing (polymeriz-
ing) and shrinking (depolymerizing) states.

II. MODEL

We base our model on the basic dynamic instability model
that was introduced by Dogterom and Leibler [18]. In this
model, microtubules exist in either the growing or the
shrinking state, and switch between these states with a “ca-
tastrophe” rate r,. (growth — shrinkage) and a “rescue” rate r,
(shrinkage — growth). In the growing state, the microtubule
extends with an effective speed v*, and in the shrinking state
it retreats with an effective speed v~. New microtubules are
nucleated with a steady nucleation rate r,. This set of con-
straints gives rise to a steady-state distribution of microtu-
bule lengths, provided that v*/r.<v~/r,. See Table 1 for an
overview of the model parameters.

We model microtubule severing by a constant severing
rate per unit length. This is a valid approximation if we as-
sume that microtubule severing process occurs on a time
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TABLE I. Overview of the parameters in natural dimensions
and the dimensionless parameters.

Model parameters

v* growth speed
v” shrinkage speed
T catastrophe rate
r, rescue rate
T, nucleation rate
Ty severing rate

Dimensionless parameters

v=v*/v” speed ratio
r=r,/re rescue rate
s=ro*/ ri severing rate

scale that is much shorter than the time in which a microtu-
bule grows significantly. By taking a constant severing rate,
we also implicitly assume that severing is limited by the
availability of microtubules, i.e., the severing protein is
available in abundance. However, because we focus on
steady-state results, where the total amount of microtubules
is constant, the possible invalidity of this assumption will not
qualitatively affect the results.

Following the approach in [18], we construct a set of
evolution equations for the length distributions of growing
and shrinking microtubules. Denoting the growing and
shrinking microtubule length distributions by m*(l,r) and
m~(1,1), respectively, the equations can be written as

+
severing?

J J
a—fm*(l,t) =- v+5m+(l,t) —ramt (L) + r,m~(1,1) + O

(1a)
J _Jd . _ B
&_tm (L=v Em (L) + ram*(Lt) — rym~ (L) + Deerings
(1b)

where the derivatives with respect to / reflect the translation
of the distributions due to growth and shrinkage of microtu-
bules. The severing contribution ®eyerin, Will be constructed
below. These equations are supplemented by the boundary
condition

m*(0.,6) = v— 2)

specifying the nucleation of new microtubules with rate r,,
and by the physically motivated constraint that both distribu-
tions tend to zero for large lengths (there are no infinitely
long microtubules).

A. The severing process

In the following we derive the form of the severing terms
in the set of Egs. (1). The inclusion of severing events leads
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to two types of contributions to the evolution of the length
distributions: the disappearance flux ¢y, (1,t) of microtu-
bules of a certain length [ and the appearance fluxes ¢, (1’ 1)
and ¢;,(I",t) of two new microtubules with a total length
[=1"+!". In addition, the newly created microtubules can be
created from microtubules that were initially growing (+) or
shrinking (-). Symbolically, we write

(I):evering == ¢;ut(l’t) + ;1,+(l’t) + ¢it1,—(l’t)> (3)

Plevering = = Poullst) + bin (L1) + ¢y, _(L1), (4)

where ¢9,(1,7) stands for the removal of microtubules in
state o € {~,+}, and ¢ (I,7) represents the appearance of
new microtubules of length / in state o as a result of the
severing of microtubules in state 7. The contributions will be
discussed individually below.

The process of severing is controlled by the severing rate
r, that is given as a rate per unit of length. Thus we find that
the fluxes of disappearing microtubules ¢? (/,7) (growing)
and ¢, (/,7) (shrinking) are given by

boul.t) = ridm* (1), (5)

oul ) = rdm™(L,1). (6)

In order to specify the influx terms ‘/’i,: it is necessary to
specify the process of severing in more detail. We will as-
sume that the action of the severing protein is local, thus
having no effect on the remote plus and minus ends of the
microtubule it severs. This implies that the plus end fragment
of a severed microtubule remains in the same state. However,
we must make an explicit assumption regarding the state of
the newly created plus end. In line with biological observa-
tions [19], we assume that this plus end always starts out in
the shrinking state. A severing event thus shortens an exist-
ing microtubule without affecting its growth state and creates
an additional microtubule that is in the shrinking state. If
necessary, the model can easily be extended to handle
(a fraction of) severing-created plus ends that start out in the
growing state.

Let us define the uniform probability density of selecting
a severing location [ on a microtubule of length [’ as p(I|I"),
with the value 1/1’ for [ €[0,1’], and 0O otherwise. We then
derive the influx ¢ ,(/,7) of growing microtubules of length
[ that results from the severing of growing microtubules.

RNE f Gl DU~ 1]1")dl’
0

” 1
= rsf I'm*(I"6(l' - l)l—,dl’
0

= rs.Jw m*(1")dl’, (7)
I

where 6(x) is the Heaviside step function. In a similar way,
and taking account the fact that the minus end fragment is
always in a shrinking state, we derive
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e}

¢i_n,+(laf)=fw ¢3m(l’,t)p(1|l’)dl'=rsf m*(1dl’, (8)
0 1

¢H1,_(l,f)=f Goul'-DIp(UI") + p(I" = JI")]dl'
0

=2r, f ’ m=(1")dl". )
1

And, because the severing of shrinking microtubules cannot
produce growing microtubules, we have ¢1+n,-(l’f)=0-

Note that we do not need to keep track of the correlations
between the lengths of the individual microtubules that are
created from a single cutting event, because we are looking
only at ensemble-averaged length distributions. The contri-
butions derived above are similar in form to those introduced
by Edelstein-Keshet and Ermentrout [16] as the continuous
limit of a discrete monomer addition and severing model for
actin filaments. However, we use distinct asymmetric terms
for growing and shrinking microtubules.

The model as described does not explicitly take into ac-
count the often observed depolymerization of microtubules
at their minus ends that leads to treadmilling. However, this
case is easily addressed through a renormalization of the
growth and shrinkage speeds. Denoting the shrinkage speed
at the minus end by v™, this is achieved by the substitutions
vt—v*—v™ and v —v +v", leaving the results qualita-
tively unchanged by the incorporation of treadmilling.

B. Steady-state equations

Inserting the severing terms into Egs. (1) we obtain

J J
a—th’(l,t) =—r.m*(l,t) + r,m~(l,1) - U+Em+(l,t) —rdm*(L,1)

+ rsf m*(1,0)dl’ (10a)
1

J J
a—tm_(l,t) =+r.m*(l,t) = r,m~(1,1) + v_am_(l,t) —rdm=(1)

+ rSJ [m* (") +2m~(I")]dl’, (10b)
!

We note that in the special case when r.=r,=0, the equation

for the length distribution of the growing microtubules is

equivalent to the model of microtubule guanosine triphos-

phate (GTP) cap dynamics by Flyvbjerg er al. [20] with a

vanishing diffusion constant.

The number of parameters in these equations can be re-
duced by scaling the parameters and variables using natural
units for length, time and microtubule number. As a unit of
time, we take the mean time to catastrophe (1/r,); the unit of
length is the microtubule growth in that time (v*/r,) and unit
of microtubule number is the number of microtubules nucle-
ated in this time (r,/r.). In terms of the dimensionless length

. re
unit x=U—‘+l, we define
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fr) = ‘r’—m+(z<x),z>, (11)
F)= ’:—m-(ux),z), (12)
v=vtvT, (13)
r=rir., (14)

s = rsv+/r§. (15)

Note that the definition of v is inverted with respect to its
natural conversion into dimensionless parameters, but this
choice simplifies the notation in what follows. In the steady
state, the Egs. (10) in dimensionless form become

P = LW ) =) f PN,

(16a)
1d
——f(x) == f1(x) + rf(x) + sxf"(x)
v dx

—sfm () + 2 (x")]dx', (16b)

with the boundary conditions

f/0)=1; lim ff(x)=0; lim f(x)=0. (17)
In the absence of severing (s=0) these equations are solved
by the exponential functions f*(x)=e (""" and f(x)
=ve~U7)* [18]. Note that these solutions are only valid for
rv <1, when the average microtubule length is bounded.
We proceed to analyze the steady-state Egs. (16) in a
number of steps. First, we determine global properties of the
length distributions. Subsequently, we derive an explicit ex-
pression for the microtubule length distributions in the spe-
cial case in which rescues are absent (r=0). We conclude
with a numerical method using which the distribution can be
calculated for arbitrary parameter values.

III. RESULTS
A. Number of microtubules

Multiplying Egs. (16) by x, integrating from 0 to « and
subtracting the results yields

vfmf*(x)dx=fxf“(x)dx. (18)
0 0
Also, integrating over Eq. (16a) yields
- f7(0) =—f [f*(x) = rf~(x)]dx, (19)
0

which can be combined with Egs. (17) and (18) to give the
following expression for the total number of microtubules.
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J W + = 2 (20)
0 —rv

Surprisingly, the total number of microtubules in the system
does not depend on the rate of microtubule severing. Specifi-
cally, we note that severing cannot prevent the diverging
microtubule count for rv — 1.

B. In the absence of rescue events

In the special case r=0 (no rescue events), Eq. (16a) for
Sf*(x) decouples from Eq. (16b) and can be solved analyti-
cally. This solution can then be used to obtain an expression
for f~(x) as well. We introduce the functions F*(x)=
—[7f(x")dx’, allowing us to rewrite Egs. (16) as

%(iF*(x)+(l+sx)F*(x)> =0, 1)

d d
;@F_(x) =— EFJ’()C) + sxaF_(x) +sF(x) + 2sF(x).

(22)

From Egs. (18) and (20) we find that F*(0)=-1 (because r
=0), and using the boundary condition d,F*(0)=7*(0)=1 we
solve Eq. (21) to obtain

Ff(x)=- exp(— x— %sx2> . (23)

Inserting this solution into Eq. (22), it can be solved using
the boundary conditions F~(0)=—v [from Eq. (20)] and
lim,_,,, F(0)=0 to give

1
F(x)=-v exp(—x - Esvz>

— 1+s(1 2
X{l - \/?\r’s(l +v)x eXp<(+2§((l—::))))X))

X erfc(H—M>] (24)
V2s(1 +v) '

where erfc(y) is the complementary error function

o0

2
erfe(y) = — edr. (25)

N Jy
The expressions for f*(x) and f~(x) follow by differentiation
of Eq. (24). The resulting distribution for v=1/2 and various
values of s is shown in Fig. 1.
Looking at the derivative of the combined distribution
SH(x)+f (x), we find that for x=0

S+l (401 =50 ~20)). (20

The perhaps surprising implication is that if v <1/2, suffi-
ciently high severing rates can lead to a positive slope of the
distribution at x=0. In other words, in that case the length
distribution no longer decreases monotonically with length.
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FIG. 1. Results in the absence of rescues (v=1/2, r=0). The
choice v=1/2 is an approximate value based on the in vivo mea-
surements in interphase plant cells reported by Vos et al. [21]. (a)
Length distributions for three different values of the severing rate:
s=0 (black), s=1 (dark gray) and s=3 (light gray). The inset shows
the same on a logarithmic scale. (b) Average length as a function of
the severing parameter s. The squares indicate the parameter values
of the distributions in (a). The dashed line is the small-s approxi-
mation (A5). Length distributions have been calculated from Egs.
(23) and (24); the average length from Eq. (29).

Finally, we compute the average microtubule length as

J AP + £ (0)dx
_Jo
L , (1)
f £ + () Jax
0
__ IL J [F(x) + F-(0)]dx, (28)
+v 0
=%e”zzjOc e_’zdt, (29)
Z 1/z

with z=s(1+v). This confirms that the average length de-
creases with increasing severing activity, a fact that is re-
flected in Fig. 1.

C. Numerical evaluation of the length distribution

For the more general case r>0 we use a numerical
method to solve Egs. (16). In order to do so, we reparam-
eterize the problem. Inspired by the results (18) and (20) we
define
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p(x)=f"(x) +f(x), (30)
q(x) =vf*(x) - f~(x). (31

Hence, p(x) is a (dimensionless) measure of the total micro-
tubule density. In terms of these variables, the steady-state
Egs. (16) can be written as

400 = sv[—xpu) 42 f mp(x')dx'] @

ip(X) =—(1-r)p(x) = (1 +r)g(x) = s(1 —v)xp(x)

— sxq(x) + Sf [q(x") + (1 = 2v)p(x")]dx".

(33)

Equation (32) can be formally solved to give

q(x) = svfw {x’p(x’) - 2pr(X”)dx"]dX’, (34)

=svfw [2x—x")p(x")]dx". (35)

Inserting this expression into Eq. (33) we transform the prob-
lem into a single integral equation. We can subsequently re-
move the integrals by differentiating three times and obtain
the linear fourth-order ODE
pP) =[-1+r0-s(1 -v)x]p®(x)
+5{=4+ 0[5 +x(1 +r+s0)]}p?(x)
+4sv(1 + r+2sx)pV(x) + 120s%p(x), (36)

where p(x) stands for (d/dx)"p(x). To derive the boundary
conditions for this problem we use Egs. (20), (18), and (17)
to derive

f (= 11 e (37)
0 —rv
fc q(x)dx=0, (38)
0
q(0)==p(0)+ 1 +v. (39)

By repeated application of these equalities and differentia-
tion of Egs. (32) and (33) we obtain the boundary conditions

pP(0)=(1+0)rp(0) = (1+v)(1+ 1)+ s(1 +v)<11iizlj)

(40)
PP0) =[- r(1+v)(1 = rv) + 35v]p(0)

+(1+u)[(1+r)(1—rv)—s<3‘”’—+2’”2>]. (41)

1-rv
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p0) =r(1+0)[(1=rv)>+sr(=3 +7v)]p(0)
—A+0)1+1(1=r)*+s(1+0)[6+3r—4v

1+
- 5rv +2rv?] —s2<1 g

— )(3 —4v+8v%). (42)

We note that these boundary conditions are of the form

p(0)
p(0)
p2(0)
p(0)

with a single undetermined parameter p(0). Because Eq. (36)
is a homogeneous linear ODE, we can evaluate it twice, us-
ing both P and P, as boundary conditions. We generally find
that both solutions diverge with opposing signs. The value of
p(0) can therefore be determined from the constraint
lim,_.., p(x)=0.

To this end, both solutions should be evaluated over a
range that is as large as possible, while maintaining a very
high numerical accuracy, because the final result is obtained
by subtracting two diverging functions. In our numerical cal-
culations (using Wolfram Mathematica 6.0), we have evalu-
ated the differential equation with sufficient precision to
achieve an accuracy of 13 significant digits and limited the
integration range to 10 decay lengths (x=10(1-rv)~") or the
point at which the first solution exceeded the value 108, de-
pending on which occurred first.

Figure 2 shows the numerically computed distributions
for v=1/2, r=1, and various values of s. It is interesting to
note that the total distribution is no longer monotonically
decreasing for s=1 and s=3. Figure 3 shows that this is
solely due to the contribution from the growing microtu-
bules. We also note that the average length decreases rapidly
for relatively small severing rate. As the severing rate in-
creases, the average length converges to that of the system
without rescue events (r=0). In other words, if severing
events occur very frequently, rescue events are no longer
significant, presumably because the microtubules become so
short that they disappear before they can be rescued. This

=Pp(0) + Py, (43)

statement is summarized by the condition 1/ rr>l_/ v, where

[ is the average microtubule length, or in dimensionless units
rox<<1.

IV. DISCUSSION

We have constructed a model that describes the dynamic
instability of microtubules in combination with the severing
of microtubules. This model takes the form of two coupled
integrodifferential equations that are a function of three pa-
rameters: v, the ratio of polymerization and depolymeriza-
tion speeds, r, the ratio of the rescue and catastrophe rates,
and the dimensionless severing rate s. We have analyzed the
steady-state solutions and their properties: notably the num-
ber of microtubules and their average length. For the special
cases of no rescue events (r=0) and small severing rates (see
Appendix), we have presented analytical solutions. The gen-
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FIG. 2. Numerically computed length distributions and compari-
son with simulation data. Based on the in vivo measurements in
interphase plant cells reported by Vos ef al. [21], approximate val-
ues of v=1/2 and r=1 have been used. (a) Length distributions for
three different values of the severing rate: s=0 (black), s=1 (dark
gray), and s=3 (light gray). The inset shows the same on a loga-
rithmic scale. Also shown for s=1 is data obtained by a stochastic
simulation of microtubule severing using a Gillespie algorithm,
matching the predicted distribution. Simulation parameters were
(*=0.1 ums™', v7=02 ums™', r.=001 s, r=0.01 s7!,
r,=10 s7, 7,=0.001 um~'s7!). Length data was distributed into
500 bins and sampled 1000 times at 50 s intervals after an initial
equilibration period of 50 000 s. (b) Average length as a function of
the severing parameter s. The squares indicate the parameter values
of the distributions in (a). The dashed line is the small-s approxi-
mation (A5) The light gray curve, which converges for large s, is
the result for r=0 (Fig. 1). Length distributions have been calcu-
lated from Eq. (36).

eral case has been addressed by transforming the coupled
integrodifferential equations into a single fourth-order differ-
ential equation that is solved numerically. The resulting mi-
crotubule length distributions show a number of interesting
properties.

A. Shorter, more compact length distributions

As expected, an increase in the severing rate always leads
to a decrease in the average length of the microtubules. In
addition, because the rate of severing is proportional to the
microtubule length, the number of very long microtubules is
strongly reduced, leading to a distribution that is more com-
pact (see Appendix for an explicit expression). Furthermore,
in contrast to the dynamic instability model without severing,
the length distributions are no longer guaranteed to decrease
monotonically with increasing length. For some parameters,
a “bump” is observed in the length distribution, caused by
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FIG. 3. Length distributions for growing and shrinking micro-
tubules separately (v=1/2, r=1, s=1). The total distribution
function p(x)=f*(x)+s (x) has been computed numerically using
Eq. (36); f*(x) and f~(x) have been computed using Egs. (35) and
(31).

the continuous creation of short (but not vanishingly small)
microtubules through the severing process.

B. Conservation of microtubule number

We have also demonstrated that the total number of mi-
crotubules does not depend on the severing rate, even though
the average length of each microtubule decreases.
To understand this counterintuitive result, we consider a sys-
tem without severing, in which the following steady-
state relation holds: [population size]=[nucleation rate]
X [average lifetime]. Suppose that a single microtubule is
severed (consistent with an infinitesimally small severing
rate). The expected lifetime of the created segments is obvi-
ously shorter than that of the original segment. However, the
fact that the total number of microtubules is unaffected by
the presence of severing implies that this decrease in lifetime
is compensated exactly by the fact that every severing event
“nucleates” an extra microtubule. For this cancellation to oc-
cur, the sum of the lifetimes of the two fragments of a sev-
ered microtubule should equal the expected lifetime of the
microtubule if severing had not occurred.

That this is indeed the case can be shown using a simple
argument, based on the lifetime of a microtubule in the ab-
sence of severing. In this case the dynamics of the microtu-
bule tip are independent of its length. This implies that the
average time it takes for a growing microtubule of length / to
later return (in a shrinking state) to the same length is inde-
pendent of the value of /, and therefore equal to the average
microtubule lifetime 7" (obtained by starting from [(z,)=0).
The remaining contribution to the lifetime is given by the
time it takes for the shrinking microtubule of length / to
disappear. In the absence of rescue events, this would take a
time [/v~. However, each rescue event switches the microtu-
bule back to the growing state, extending the microtubule’s
expected lifetime by T* before it returns to the same position
in the shrinking state. The expected number of such rescue
events is equal to r,//v~. This argument is illustrated in Fig.
4. Collecting the terms described above, we obtain the fol-
lowing expression for the expected microtubule lifetime
T(l,0) of a microtubule of length [ and growth state
oef{-,+}
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FIG. 4. Schematic depiction of the life history of a shrinking
microtubule with an initial length /(0). The return times ¢; have an
expectation value T*.

T(,0)=T*6, , + (1 +1,T%). (44)
U

The same relation, including an expression for 7, has been
derived analytically by and Bicout [22] and an equivalent
expression for microtubules that grow in discrete units was
produced by Rubin [23].

Each severing event conserves the total length [ of the
severed microtubule and the state o of the existing plus end,
and the newly created plus end immediately undergoes a
catastrophe (0,.w=-). In terms of life times we find that
T(l,0)=T(I' ,0)+T(I-1',-), so that a single severing event
indeed preserves the total lifetime. By induction it follows
that any number of severing events will leave the expected
number of microtubules in the system intact.

We stress that this argument holds regardless of the fre-
quency and location of severing events. This implies that any
distribution of severing events—provided they lead to a ca-
tastrophe of the trailing end—conserves the total number of
microtubules in steady state. Specifically, this also applies to
severing at positions where microtubules of different orien-
tations cross [14], a process that may be relevant to the for-
mation of the cortical array in plant cells.

The conservation of microtubule number in the presence
of severing is in apparent contradiction with the experimen-
tally reported increase in microtubule numbers [11]. How-
ever, this can be readily explained by the fact that our results
are based on the assumption of constant parameter values. In
a living cell, the decrease in average microtubule length that
is the result of severing will lead to an increased availability
of free tubulin dimers. In turn, this is likely to increase the
polymerization rate (growth speed) and nucleation rate,
which would indeed cause an increase in the number of mi-
crotubules.
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APPENDIX: SMALL SEVERING RATES

In the absence of severing, Egs. (16) are solved by f*(x)
=e 7% and f(x)=ve "% To investigate the changes
that occur when a small severing rate is included, we perturb
these solutions as follows:

) = e 4 5 (0] + O(s?) (A1)

£ (x) =ve 1+ 57 (x)] + O(s2).

Inserting these expressions into Eqs. (16) and dropping all
higher order terms gives a set of equations that can be solved
to yield

(A2)

1+ r0? 1 +r0?
_ ,—(1-rv)x _ 2 2
ffx)=e (]+S{(1—rv)2x 2(1_rv)x]>+0(s ),
(A3)
1+v —v+ v +2rv?
— o —(1=rv)x
f(x)=ve (1+S{(l—rv)2+ (1— o) X

2

- ﬁxzb +0(s?). (A4)

We note that both solutions will become negative for large
values of x. However, even though this is decidedly unphysi-
cal, the effect on measurable parameters such as the average
microtubule length is small (for small s), because of the rapid
decay of |f*(x)| and |f~(x)|. The properties of the resulting
distributions, such as the average length, will therefore still
remain valid, subject to the bounds on s computed below.

The first-order distributions in s satisfy the total microtu-
bule number constraint [§[f*(x)+f (x)]dx=(1+v)/(1-rv)
+0(s?), consistent with the general result (20). For the aver-
age length we obtain (to first order in s)

1 I+v

X= = +0(s?).
* 1-rv Y(1—rv)4 %)

(A5)

For r=0, this is consistent with the exact result (29). The
resulting (linear) predictions are indicated in Figs. 1 and 2.
Finally, we determine the length variation

1 22+ v +rv?)

0'2= -3 = — +0 2

o= =279 (1-rv)? (1-r) )
(A6)

and, from that, the coefficient of variation (o,/Xx)
1+ rv?

IX=1-k——=+O0(s?). A7
aE= -k s 0 (A7)

This number provides a measure for the relative width of the
distribution. The results (A5) and (A7) confirm that severing
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decreases both the weighted average and the relative width
of the length distribution.

The results above have been obtained under the assump-
tion that s is very small. To make an a priori estimate for the
validity range of s, we determine the relative importance of
the terms on the right-hand side of Eqs. (16a) and (16b).
Using the results in the absence of severing as a benchmark,
the terms not involving s give contributions of the order
(1-rv)e~1=")* Comparing the integral term (evaluated for

PHYSICAL REVIEW E 81, 031910 (2010)

the s=0 situation) with this term gives s <(1—rv)?. The term
that is proportional to sx will dominate the other terms for
large x, but this does not significantly affect the results if it
only occurs for lengths that are much longer than the average
length. Evaluating the terms at x=n/(1—-rv), where n is the
number of average lengths, we obtain the constraint s <<(1
—rv)?/n. Because n is of the order 1, we simply state that the
approximation is accurate for s <(1-rv)?.
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